Digital elevation model

A digital elevation model is a digital model or 3-D representation of a terrain's surface — commonly for a planet (including Earth), moon, or asteroid — created from terrain elevation data.

There is no common usage of the terms digital elevation model (DEM), digital terrain model (DTM) and digital surface model (DSM) in scientific literature. In the most cases the term digital surface model represents the earth's surface and includes all objects on it. In contrast to a DSM, the digital terrain model represents the bare ground surface without any objects like plants and buildings (see Figure on the right).[1][2]

The term Digital Elevation Model is often used as a generic term for DSMs and DTMs, only representing height information without any further definition about the surface[3]. Other definitions equalise the terms DEM and DTM[4], or define the DEM as a subset of the DTM, which is also representing other morphological elements[5]. There are also definitions which equalise the terms DEM and DSM[6]. In the Web definitions can be found which define the DEM as a digital regularly spaced GRID and a DTM as a real three-dimensional model (TIN)[7]. Most of the data providers (USGS, ERSDAC, CGIAR ) use the term DEM as a generic term for DSMs and DTMs. All datasets which are captured with satellites, airplanes or other flying platforms are originally DSMs (like SRTM or the ASTER GDEM). It is possible to compute a DTM from high resolution DSM datasets with complex algorithms (Li et al, 2005). In the following the term DEM is used as a generic term for DSMs and DTMs.

A DEM can be represented as a raster (a grid of squares, also known as a heightmap when representing elevation) or as a vector-based triangular irregular network (TIN). The TIN DEM dataset is also referred as a primary (measured) DEM, whereas the Raster DEM is referred as a secondary (computed) DEM[8]. DEMs are commonly built using remote sensing techniques, but they may also be built from land surveying. DEMs are used often in geographic information systems, and are the most common basis for digitally-produced relief maps. The DEM could be acquired through techniques such as photogrammetry, LiDAR, IfSAR, land surveying, etc. (Li et al. 2005). While a DSM may be useful for landscape modeling, city modeling and visualization applications, a DTM is often required for flood or drainage modeling, land-use studies, geological applications, and much more.[9]

Contents

Production

Mappers may prepare digital elevation models in a number of ways, but they frequently use remote sensing rather than direct survey data. One powerful technique for generating digital elevation models is interferometric synthetic aperture radar: two passes of a radar satellite (such as RADARSAT-1 or TerraSAR-X), or a single pass if the satellite is equipped with two antennas (like the SRTM instrumentation), suffice to generate a digital elevation map tens of kilometers on a side with a resolution of around ten meters . Alternatively, other kinds of stereoscopic pairs can be employed using the digital image correlation method, where two optical images acquired with different angles taken from the same pass of an airplane or an Earth Observation Satellite (such as the HRS instrument of SPOT5 or the VNIR band of ASTER).[10]

In 1986, the SPOT 1 satellite provided the first usable elevation data for a sizeable portion of the planet's landmass, using two-passes stereoscopic correlation. Later, further data were provided by the European Remote-Sensing Satellite (ERS) using the same method, the Shuttle Radar Topography Mission using single-pass SAR and the ASTER instrumentation on the Terra satellite using double-pass stereo pairs.[10]

Older methods of generating DEMs often involve interpolating digital contour maps that may have been produced by direct survey of the land surface; this method is still used in mountain areas, where interferometry is not always satisfactory. Note that the contour line data or any other sampled elevation datasets (by GPS or ground survey) are not DEMs, but may be considered digital terrain models. A DEM implies that elevation is available continuously at each location in the study area.

The quality of a DEM is a measure of how accurate elevation is at each pixel (absolute accuracy) and how accurately is the morphology presented (relative accuracy). Several factors play an important role for quality of DEM-derived products:

Methods for obtaining elevation data used to create DEMs

Uses

Common uses of DEMs include:

Sources

A free DEM of the whole world called GTOPO30 (30 arcsecond resolution, approx. 1 km) is available, but its quality is variable and in some areas it is very poor. A much higher quality DEM from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) instrument of the Terra satellite is also freely available for 99% of the globe, and represents elevation at a 30 meter resolution. A similarly high resolution was previously only available for the United States territory under the Shuttle Radar Topography Mission (SRTM) data, while most of the rest of the planet was only covered in a 3 arc-second resolution (around 90 meters). The limitation with the GTOPO30 and SRTM datasets is that they cover continental landmasses only, and SRTM does not cover the polar regions and has mountain and desert no data (void) areas. SRTM data, being derived from radar, represents the elevation of the first-reflected surface — quite often tree tops. So, the data are not necessarily representative of the ground surface, but the top of whatever is first encountered by the radar. Submarine elevation (known as bathymetry) data is generated using ship-mounted depth soundings. The SRTM30Plus dataset (used in NASA World Wind) attempts to combine GTOPO30, SRTM and bathymetric data to produce a truly global elevation model.[11] A novel global DEM of postings lower than 12m and a height accuracy of less than 2m is expected being generated by the TanDEM-X satellite mission which started in July 2010.

The most usual grid (raster) is between 50 and 500 meters. In gravimetry e.g., the primary grid may be 50 m, but is switched to 100 or 500 meters in distances of about 5 or 10 kilometers.

Many national mapping agencies produce their own DEMs, often of a higher resolution and quality, but frequently these have to be purchased, and the cost is usually prohibitive to all except public authorities and large corporations. DEMs are often a product of National LIDAR Dataset programs.

Free DEMs are also available for Mars: the MEGDR, or Mission Experiment Gridded Data Record, from the Mars Global Surveyor's Mars Orbiter Laser Altimeter (MOLA) instrument; and NASA's Mars Digital Terrain Model (DTM).[12]

United States

The US Geological Survey produces the National Elevation Dataset, a seamless DEM for the contiguous United States, Hawaii and Puerto Rico based on 7.5' topographic mapping. As of the beginning of 2006, this replaces the earlier DEM tiled format (one DEM per USGS topographic map).[13][14]

See also

References

  1. ^ "Intermap Digital Surface Model: accurate, seamless, wide-area surface models". http://www.intermap.com/en-us/nextmap/digitalsurfacemodel.aspx. 
  2. ^ Li, Z., Zhu, Q. and Gold, C. (2005): title=Digital terrain modeling: principles and methodology|. CRC Press. Boca Raton.
  3. ^ Peckham, Robert Joseph; Jordan, Gyozo (Eds.)(2007): Development and Applications in a Policy Support Environment Series: Lecture Notes in Geoinformation and Cartography. Heidelberg.
  4. ^ Podobnikar, Tomaz (2008). "Methods for visual quality assessment of a digital terrain model". S.a.p.i.en.s. 1 (2). http://sapiens.revues.org/index738.html. 
  5. ^ "DIN Standard 18709-1". http://www.din.de/cmd?level=tpl-home&languageid=en. 
  6. ^ Adrian W. Graham,Nicholas C. Kirkman,Peter M. Paul (2007): Mobile radio network design in the VHF and UHF bands: a practical approach. West Sussex.
  7. ^ "Landslide Glossary USGS". http://landslides.usgs.gov/learning/glossary.php#d. 
  8. ^ RONALD TOPPE (1987): Terrain models — A tool for natural hazard Mapping. In: Avalanche Formation, Movement and Effects (Proceedings of the Davos Symposium, September 1986). IAHS Publ. no. 162,1987
  9. ^ "Appendix A – Glossary and Acronyms". Severn Tidal Tributaries Catchment Flood Management Plan – Scoping Stage. UK: Environment Agency. http://www.environment-agency.gov.uk/commondata/acrobat/app_a_1243533.pdf. 
  10. ^ a b Nikolakopoulos, K. G.; Kamaratakis, E. K; Chrysoulakis, N. (10 November 2006). "SRTM vs ASTER elevation products. Comparison for two regions in Crete, Greece". International Journal of Remote Sensing 27 (21). ISSN 4819–4838. http://www.iacm.forth.gr/_docs/pubs/4/Nikolakopoulos_et_al_2006.pdf. Retrieved June 22, 2010. 
  11. ^ see Martin Gamache's paper on free sources of global data, http://www.terrainmap.com/downloads/Gamache_final_web.pdf
  12. ^ A basic guide for using Digital Elevation Models with Terragen
  13. ^ http://eros.usgs.gov/DEMNotice.html
  14. ^ see Herbert Glarner's paper on using USGS data, http://herbert.gandraxa.com/herbert/dem.asp

DEM file formats

External links